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Abstract. The direct simulation Monte-Carlo (DSMC) method has been developed to solve the Boltzmann equation for
binary gas mixtures with hard-sphere molecules. The method is applied for pressure and concentration driven flows between
two parallel plates. The flow in both cases is maintained by external force,of which expression is derived from the linearized
description of the flow. Simulations have been performed in the low Mach number limit in order to test the method against the
accurate solution of the linearzied Boltzmann equation (LBE) with hard-sphere molecules. Very good agreement is obtained
between the two situations. The results provided by the present method have also been compared to the corresponding ones
of the McCormack kinetic model. It is shown that the agreement between the results obtained from the DSMC method with
hard-sphere molecules and the McCormack kinetic model is satisfactory. Hence, it is concluded that the McCormack kinetic
model provides reliable results for isothermal flows in comparison to the linearized Boltzmann equation for hard-sphere gases.
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INTRODUCTION

Over the last decades, rarefied gas flows have attracted much attention in the scientific community. The increasing
interest is justified by the appearance of micro- and nano-fluidics besides conventional research fields, such as vacuum
technology or high-altitude flows.

From theoretical viewpoint, rarefied gases can be describedby extended hydrodynamics at small or moderate
rarefactions. The lattice Boltzmann method has also been used for modeling gaseous flows in this domain [1].
However, for the whole range of the rarefaction, kinetic description is necessary. Much effort has been paid to solve
the Boltzmann or model kinetic equations mainly in their linearized versions. The direct simulation Monte Carlo
method [2] emerged as an alternative approach for modeling and calculating rarefied flows. In principle, the DSMC is
a gas model; however, the results provided by the method converge to the solution of the Boltzmann equation [3]. The
advantages of the DSMC are its relatively simplicity and applicability for arbitrary geometry. Various research groups
have developed DSMC algorithms for general rarefied gas calculations [4, 5].

Single component gas flows have been extensively studied during previous years. Model kinetic equations have
been solved for various flow configurations. On the contrary,there are relatively few works on gaseous mixtures.

In this paper, a DSMC method has been developed to calculate pressure and concentration driven binary rarefied
gas flows between two parallel plates. The goal of the research is to examine the feasibility of the DSMC to solve
the Boltzmann equation for the binary gas and to compare the McCormack kinetic model to hard-sphere gases. An
advanced double sampling technique is used in the present DSMC approach. The results obtained from the DSMC
methodology is compared to the solution of the linearized Boltzmann equation with binary hard-sphere molecules. On
the other hand, a comparative study is carried out between the LBE results provided by the DSMC and the solution
of the McCormack linearized kinetic model, which is extensively used in the past for the description of gaseous
mixtures. In both cases, results are provided for the flow rates. In addition, representative velocity profiles obtained
from the DSMC and the McCormack model are compared to each other.

STATEMENT OF THE PROBLEM

Pressure or concentration driven binary gas flow between twoparallel plates is considered. The normal vector of the
plates lies in thex coordinate direction, while the flow is in they direction. The distance between the plates is denoted



by L. The gas mixture consists of the two componentsα = 1,2. The interaction between the particles is assumed to
be hard-sphere. The molecular masses, the diameters and thecomponent particle densities are introduced bymα ,dα
andnα , respectively. It is assumed that the first component is the lighter particle with smaller molecular diameter. The
concentration of the first component is introduced byC = nα/n, wheren = n1 +n2 is the total density of the mixture.
The flow is driven by pressure or concentration gradients defined by
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whereP is the pressure. The DSMC approach will be compared to linearized kinetic calculations; hence, the gradients
are assumed to be smallXP << 1 andXC << 1 for the comparison. However, it is emphasized that the present DSMC
approach can be used beyond the linearized domain.

In the present problem, the primary focus is on the macroscopic velocity of the gas componentsuuu′α = [0,u′α ,0]. For
latter purposes, the dimensionless velocities for the pressure or concentration driven flow are introduced by

u(i)
α = −

u′α
v0Xi

, (2)

wherev0 = (2kBT/m)1/2 is the characteristic velocity of the problem withkB, T andm = Cm1 + (1−C)m2 being
Boltzmann constant, the temperature and the average mass. In addition,i = P,C depending whether the flow is driven
by pressure or concentration gradient, respectively.

The dimensionless component flow rates are introduced by
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for i = P,C.

EXTERNAL FORCING APPROACH

In the DSMC method, an innovative external forcing approachis used to model the pressure and concentration driven
flows. In order to achieve this goal, the driving forcesXP andXC need to be connected to the external acceleration
exerted on the gas molecules. This can be done by using linearized kinetic description.

At the kinetic level, the description of the flow is carried out by the one-particle distribution functionfα(vvv, rrr, t) with
vvv = [vx,vy,vz], rrr = [x,y,z] andt denoting the molecular velocity, the spatial coordinate vector and the time variable.
For the present problem, thezcoordinate does not appear; hence, it is omitted from our discussion in the following for
simplicity. The distribution function obeys the Boltzmannequation
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∂

∂vy
fα = Qα , (4)

whereQα denotes the collision operator encoding the molecular interactions between the particles andaα is a possible
external acceleration in they direction. In the following, the acceleration is determined by employing linearization and
matching the resulting terms to the pressure and concentration gradients.

Corresponding to the smallness of the driving termsXP andXC, the distribution function can be linearized by

fα(vvv,x,y, t) = f 0
α(vvv) [1+hα(vvv,x, t)+(XP +ηαXC)y/L] , (5)

wherehα(vvv,x, t) is the perturbation function and theηα quantity is defined byη1 = 1, η2 = −C/(1−C). In addition,
the equilibrium distributionf 0

α(vvv) is given by
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By substituting, the linearized form of the distribution function into the Boltzmann equation, Eq. (4), and manipulat-
ing the third and fourth terms on the left, the equivalence between the acceleration and the pressure and concentration



gradients can be obtained. The pressure or concentration driven flow is equivalent with the external force driven flow.
For the pressure or concentration driven flow, the driving terms can be recovered by the accelerations
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v2
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0

2L
ηαXC, (7)

respectively. In this way, the external acceleration is determined in the method.

THE DSMC METHOD

The DSMC method is used for modeling the flow and calculating its properties. In the method, the considered geometry
is divided into a collection of cells. Because of the symmetry of the problem, the motion of the gas molecules is
simulated in one spatial dimension spanned by the coordinate x along the transverse of the channel. Thex coordinate
axis is divided intoNC number of cells. There isNTot total number of test particles initially uniformly distributed in
the computational domain. The motion of the test particles is simulated by splitting between free motion and collision;
the time step of the algorithm is denoted by∆t. The method is based on the No Time Counter scheme. The preselected
particles for collision between the componentsα,β per cell is given byNαβ = Nα n̄β σT,αβ (vr,αβ )max∆t/2, where
Nα is the number of particles from componentα in the cell,n̄β is the average density of componentβ in the cell,
σT,αβ is the total cross section andvr,αβ is the absolute value of the relative velocity for components α andβ . In
the DSMC algorithm, an acceptance-rejection method is usedfor the final collision pair generation. From theNαβ
preselected particle pairs, we accept pairs with probability p= vr,αβ /(vr,αβ )max. For hard-spheres,σT,αβ = πd2

αβ with
dαβ = (dα +dβ )/2. In the DSMC scheme, a double sample technique is used. The algorithm consists of the following
five repeated steps: 1. free streaming, 2. acceleration, 3. sampling, 4. collision and 5. sampling. This approach is similar
to the Strang-splitting [6]. However, in that case, the moving step is halfed and one sampling step is used.

Definition of the rarefaction degree

In the DSMC method, the actual value of the number of preselected collisionsNαβ needs to be determined for the
simulations. This can be achieved by the inclusion of the rarefaction degree in the model. The method uses two types
of definition of the rarefaction degree depending on other approaches with which the results are compared. First, the
method is compared to the linearized Boltzmann equation [7]then to the McCormack model [8].

In the expression ofNαβ , the collision cross section needs to be rewritten in units of the problem. In the following,
the σT,11 collision cross section will be determined by the inclusionof the rarefaction degree for the LBE and
McCormack cases. The remaining cross sections fromσT,11 are obtained byσT,12 = σT,21 = σT,11(d12/d11)

2 and
σT,22 = σT,11(d22/d11)

2.

Simulation with regard to LBE

In this situation, the channel widthL is given by

L = lπ−1/2 1
n(Cd1 +(1−C)d2)2 , (8)

wherel is the dimensionless channel width used in the LBE approach [7]. As a result, the cross section of the the first
component can be written by

σT,11 = πd2
1 = lπ1/2 d2

1

nL(Cd1 +(1−C)d2)2 (9)

as a function of theratio of d2/d1. Using this quantity, the actual value ofNαβ can be determined.



TABLE 1. Flow rates obtained from DSMC and LBE for pressure driven flow.

DSMC LBE

l G(P)
1 G(P)

2 G(P)
1 G(P)

2 ∆1(%) ∆2(%)

Ne/Ar 0.1 3.968 3.350 3.971 3.346 -0.08 0.12
1 2.802 3.499 2.805 3.503 -0.11 -0.11
10 5.496 7.685 5.500 7.688 -0.08 -0.04

He/Xe 0.1 3.419 3.623 3.426 3.625 -0.20 -0.06
1 1.310 4.189 1.311 4.187 -0.08 0.05
10 1.799 9.927 1.801 9.939 -0.11 -0.12

TABLE 2. Flow rates obtained from DSMC and LBE for concentration driven flow.

DSMC LBE

l G(C)
1 −G(C)

2 G(C)
1 −G(C)

2 ∆1(%) ∆2(%)

Ne/Ar 0.1 2.813 1.142 2.815 1.146 -0.06 -0.32
1 5.695E-1 2.393E-1 5.698E-1 2.395E-1 -0.06 -0.07
10 6.402E-2 2.735E-2 6.405E-2 2.747E-2 -0.04 -0.44

He/Xe 0.1 3.097 1.170 3.100 1.171 -0.11 -0.09
1 6.485E-1 2.607E-1 6.485E-1 2.605E-1 0.00 0.06
10 7.463E-2 3.160E-2 7.412E-2 3.155E-2 0.70 0.16

Simulation with regard to McCormack

In the case of the McCormack model, the cross section of the first component is determined from the rarefaction
parameter through the viscosity. The rarefaction parameter of the mixture is given byδ = PL/(µv0), whereµ = µ(C)
is the mixture viscosity. The viscosity depends on the concentration. The component viscosities are introduced by
µ1 = µ(1) andµ2 = µ(0).

The hard-sphere viscosity of the first component [9] can be written by

µ1 = 1.016034
5
16

√
πm1kBT
σT,11

. (10)

By using the rarefaction parameter, the characteristic velocity and the ideal gas law together with Eq. (10), the cross
section of the first component is obtained by

σT,11 = 1.016034
5
16

(2π)1/2
(m1

m

)1/2 δ
nL

µ
µ1

. (11)

It can be seen that this expression requires theratio of the mixture viscosity to the viscosity of the first component.
This ratio for hard-spheres can be obtained in a standard manner. Using this information, the actual value ofNαβ can
be determined.

RESULTS

First, simulations have been performed to compare the DSMC results to the LBE for binary hard-sphere gases. In
the simulations, the flow rate has been computed and comparedto the results available in Ref. [7]. The results are

characterized by the dimensionless channel width given in Ref. [7]. It is mentioned that theG(i)
α values are exactly the

same in the DSMC and the LBE for the pressure driven flow. However, the flow rate in Ref. [7] must be multiplied
with (1−C)−1 to be compatible with the present DSMC for the concentrationdriven flow. The following channel
width cases are investigatedl = [0.1,1,10]. The concentration isC = 0.4 in all situations. Diffuse-specular boundary
condition is assumed at the channel walls. The accommodation coefficients areγ = [0.2,0.4] for the first and the second
components at the left wall, whileγ = [0.6,0.8] for the first and second components at the right wall. The parameters
in the simulations are given as follows:NC = 100 forl = [0.1,1] andNC = 200 forl = 10. The total number of particles



TABLE 3. Flow rates obtained from DSMC and McCormack for pressure driven flow.

DSMC McCormack

δ G(P)
1 G(P)

2 G(P)
1 G(P)

2 ∆1(%) ∆2(%)

Ne/Ar 0.1 1.981 1.932 2.039 2.058 -2.84 -6.12
1 1.385 1.632 1.421 1.688 -2.53 -3.32
10 2.271 3.151 2.315 3.210 -1.90 -1.84

He/Xe 0.1 2.097 2.013 2.065 2.232 1.55 -9.81
1 1.117 1.956 1.114 2.025 0.27 -3.41
10 8.584E-1 4.040 8.706E-1 4.111 -1.40 -1.73

TABLE 4. Flow rates flow obtained from DSMC and McCormack for concentration
driven.

DSMC McCormack

δ G(C)
1 −G(C)

2 G(C)
1 −G(C)

2 ∆1(%) ∆2(%)

Ne/Ar 0.1 1.763 1.628 1.811 1.737 -2.65 -6.30
1 7.106E-1 6.834E-1 7.220E-1 7.042E-1 -1.58 -2.95
10 1.175E-1 1.198E-1 1.199E-1 1.219E-1 -2.00 -1.69

He/Xe 0.1 2.044 1.698 2.006 1.891 1.89 -10.20
1 9.232E-1 8.432E-1 9.122E-1 8.702E-1 1.21 -3.10
10 1.861E-1 1.919E-1 1.856E-1 1.878E-1 0.28 2.17

is NTot = 105 and the the time step is∆t = 0.005L/v0 in all cases. Samples have been calculated over 5×107 time
steps after the system has reached its steady state. The average velocity of the lighter particle between the plates is
fixed atū′1 = 0.015v0.

In Tables 1-2, the flow rates are presented for both DSMC and LBE. The difference betweenG(i)
α for the DSMC and

LBE is defined by∆α = (G(i)
α,DSMC−G(i)

α,LBE)/G(i)
α,LBE. In Table 1, the results for the pressure driven flow is presented.

It can be seen that good agreement is obtained between the twoapproaches. The absolute discrepancy between the
two situations is less than 0.20%. In Table 2, the flow rate for the concentration driven flowis presented. Again, good
agreement is found between the DSMC simulations and LBE calculations. The absolute deviation between the two
approaches is less than 0.70%.

Secondly, the flow rate provided by the DSMC simulation is compared to the results of McCormack given by Ref.
[8]. Now, the results are characterized by the rarefaction parameter. It is noted that the rarefaction parameter isδ = l ,

wherel is the dimensionless channel width in Ref. [8]. Again, the values ofG(i)
α are exactly the same for the DSMC

and McCormack considering the pressure driven flow. However, the flow rate must be multiplied with(1−C)−1 in
Ref. [8] for the concentration driven flow. The rarefaction parameters for the simulation cases areδ = [0.1,1,10]. The
concentration isC = 0.5, and the wall is fully diffuse in all situations,γ = 1. The parameters in the simulations are the
same as in the LBE situation. However, the average velocity of the lighter particle is chosen as ¯u′1 = 0.03v0.

In Tables 3-4, the flow rates are tabulated for DSMC and McCormack. The difference between the results of the
two approaches is also introduced as∆α = (G(i)

α,DSMC−G(i)
α,McCormack)/G(i)

α,McCormack. Table 3 presents the results of
the pressure driven flow. It is clearly seen that the absolutedifference between the DSMC, which actually solves the
LBE for the hard-sphere gas, and the McCormack is less than 9.81%. In Table 4, the corresponding results for the
concentration driven flow is presented. Here, the absolute deviation between the two approaches is less than 10.20%.
The discrepancy for both flows is the largest in the rarefied region δ = 0.1 as it is expected. From these data, it can
be concluded that the agreement between the DSMC (LBE hard-sphere) and the McCormack is relatively good. This
means that the McCormack can replace the binary hard-spheresystem in actual calculations. Here, it is mentioned
that the McCormack has recently been compared to flow rate measurements under isothermal conditions [10]. Very
good agreement has been obtained between the two situations. These results indeed indicate the McCormack can be
considered a good model for binary gases and provide satisfactory results for isothermal situations.

In Fig. 1, the velocity profiles for the McCormack simulations are presented for the case ofδ = 1 in order to
demonstrate the results. It can be seen that the difference between the McCormack and the LBE results is relatively
small. The agreement between the two approaches is considered very good.
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FIGURE 1. Velocity profiles obtained from the DSMC and McCormack approaches atδ = 1. Pressure driven flow for Ne/Ar
and He/Xe mixtures: top left and right. Concentration driven flow for Ne/Ar and He/Xe mixtures: bottom left and right. The solid
and dashed lines stand for the results of the DSMC simulations for the first and second components, while△,N stand for the
corresponding McCormack results.

CONCLUSION

In this paper, a DSMC method has been developed for modellingand calculating pressure and concentration driven
binary rarefied gas flows between two parallel plates. The feasibility of the DSMC to solve the linearized Boltzmann
equation for hard-sphere molecules is confirmed by benchmarking the DSMC results to the ones provided by the LBE
for slow flows. It is concluded that the DSMC is a viable approach for solving the Boltzmann equation for binary hard-
spheres. Furthermore, the DSMC results (LBE hard-sphere) are compared against the McCormack kinetic model. It
has been found that the agreement between the two approachesis relatively good. This can be an important outcome
for modeling binary rarefied gas flows. The present DSMC approach will be applied to other flow configurations in
the near future.
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