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Abstract. The direct simulation Monte-Carlo (DSMC) method has been developedive the Boltzmann equation for
binary gas mixtures with hard-sphere molecules. The method is apptipdefesure and concentration driven flows between
two parallel plates. The flow in both cases is maintained by external fofeehich expression is derived from the linearized
description of the flow. Simulations have been performed in the low Magtbeulimit in order to test the method against the
accurate solution of the linearzied Boltzmann equation (LBE) with harérgpimolecules. Very good agreement is obtained
between the two situations. The results provided by the present methedlsavbeen compared to the corresponding ones
of the McCormack kinetic model. It is shown that the agreement betweeretiults obtained from the DSMC method with
hard-sphere molecules and the McCormack kinetic model is satisfattenge, it is concluded that the McCormack kinetic
model provides reliable results for isothermal flows in comparison to teaiined Boltzmann equation for hard-sphere gases.
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INTRODUCTION

Over the last decades, rarefied gas flows have attracted nttecti@n in the scientific community. The increasing
interest is justified by the appearance of micro- and naridiflsibesides conventional research fields, such as vacuum
technology or high-altitude flows.

From theoretical viewpoint, rarefied gases can be desciiyedxtended hydrodynamics at small or moderate
rarefactions. The lattice Boltzmann method has also beed €& modeling gaseous flows in this domain [1].
However, for the whole range of the rarefaction, kineticadigion is necessary. Much effort has been paid to solve
the Boltzmann or model kinetic equations mainly in theirelnized versions. The direct simulation Monte Carlo
method [2] emerged as an alternative approach for modefidgalculating rarefied flows. In principle, the DSMC is
a gas model; however, the results provided by the methodecgevo the solution of the Boltzmann equation [3]. The
advantages of the DSMC are its relatively simplicity andliappility for arbitrary geometry. Various research grsup
have developed DSMC algorithms for general rarefied gasiledions [4, 5].

Single component gas flows have been extensively studiddgdprevious years. Model kinetic equations have
been solved for various flow configurations. On the contithste are relatively few works on gaseous mixtures.

In this paper, a DSMC method has been developed to calculassyre and concentration driven binary rarefied
gas flows between two parallel plates. The goal of the rekdarto examine the feasibility of the DSMC to solve
the Boltzmann equation for the binary gas and to compare tb&dvmack kinetic model to hard-sphere gases. An
advanced double sampling technique is used in the preseCDepproach. The results obtained from the DSMC
methodology is compared to the solution of the linearizetfZBrann equation with binary hard-sphere molecules. On
the other hand, a comparative study is carried out betweehBift results provided by the DSMC and the solution
of the McCormack linearized kinetic model, which is exteeli used in the past for the description of gaseous
mixtures. In both cases, results are provided for the flowstdn addition, representative velocity profiles obtained
from the DSMC and the McCormack model are compared to eadhr.oth

STATEMENT OF THE PROBLEM

Pressure or concentration driven binary gas flow betweerpawallel plates is considered. The normal vector of the
plates lies in thex coordinate direction, while the flow is in tlyadirection. The distance between the plates is denoted



by L. The gas mixture consists of the two components 1,2. The interaction between the particles is assumed to
be hard-sphere. The molecular masses, the diameters andrtinent particle densities are introducedyy, dg
andng, respectively. It is assumed that the first component isigfinedr particle with smaller molecular diameter. The
concentration of the first component is introducedXby: n, /n, wheren = n; + ny is the total density of the mixture.
The flow is driven by pressure or concentration gradientsddfby
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whereP is the pressure. The DSMC approach will be compared to linedkinetic calculations; hence, the gradients
are assumed to be sma << 1 andXc << 1 for the comparison. However, it is emphasized that thegmtd3SMC
approach can be used beyond the linearized domain.

In the present problem, the primary focus is on the macrdsae@tocity of the gas componenis, = [0, u,,0]. For
latter purposes, the dimensionless velocities for thegpiresor concentration driven flow are introduced by
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wherevy = (2kgT/m)Y/2 is the characteristic velocity of the problem with, T andm = Cmy + (1 —C)my, being
Boltzmann constant, the temperature and the average maaddition,i = P,C depending whether the flow is driven
by pressure or concentration gradient, respectively.

The dimensionless component flow rates are introduced by
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fori =PC.

EXTERNAL FORCING APPROACH

In the DSMC method, an innovative external forcing appraaalsed to model the pressure and concentration driven
flows. In order to achieve this goal, the driving forcgsand Xc need to be connected to the external acceleration
exerted on the gas molecules. This can be done by usingilirdddinetic description.

At the kinetic level, the description of the flow is carried by the one-particle distribution functiof (v, r,t) with
V= [V, W,Vs], I = [X,y,Z andt denoting the molecular velocity, the spatial coordinatetmeand the time variable.
For the present problem, tlzeoordinate does not appear; hence, it is omitted from owudion in the following for
simplicity. The distribution function obeys the Boltzmaeguation
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whereQ, denotes the collision operator encoding the molecularastens between the particles amgis a possible
external acceleration in thedirection. In the following, the acceleration is deterntityy employing linearization and
matching the resulting terms to the pressure and concemtrgitadients.
Corresponding to the smallness of the driving tedpsandXc, the distribution function can be linearized by

fa(V,X,y,t) = fg(V) [14hg (V,x,t) + (Xp 4+ NaXc)y/L], )

wherehy (v, X, 1) is the perturbation function and thg, quantity is defined by); = 1, n, = —C/(1—C). In addition,
the equilibrium distributiorf{(v) is given by
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By substituting, the linearized form of the distributiomfition into the Boltzmann equation, Eqg. (4), and manipulat-
ing the third and fourth terms on the left, the equivalendsvben the acceleration and the pressure and concentration




gradients can be obtained. The pressure or concentrafi@ndtow is equivalent with the external force driven flow.
For the pressure or concentration driven flow, the drivimgtecan be recovered by the accelerations
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respectively. In this way, the external acceleration igdained in the method.

THE DSMC METHOD

The DSMC method is used for modeling the flow and calculatimgrioperties. In the method, the considered geometry
is divided into a collection of cells. Because of the symmetf the problem, the motion of the gas molecules is
simulated in one spatial dimension spanned by the coomlinaibng the transverse of the channel. Keoordinate
axis is divided intoNc number of cells. There ik total number of test particles initially uniformly distrited in
the computational domain. The motion of the test partidessmulated by splitting between free motion and collision;
the time step of the algorithm is denotedMty The method is based on the No Time Counter scheme. The @ce=e|
particles for collision between the components3 per cell is given byNyg = NyNg 07 o3 (Vr,ap)maidt/2, where
Ng is the number of particles from componantin the cell,ng is the average density of componghin the cell,
O7,qp is the total cross section angl, g is the absolute value of the relative velocity for composentand 3. In
the DSMC algorithm, an acceptance-rejection method is @ethe final collision pair generation. From tig g
preselected particle pairs, we accept pairs with protigipli= v, o3/ (V; o g)max. FOr hard-spheresir o5 = nda with
dag = (da +dg)/2. In the DSMC scheme, a double sample technique is used.|gwitlm consists of the foIIowing
five repeated steps: 1. free streaming, 2. acceleratioan®ling, 4. collision and 5. sampling. This approach is Emi
to the Strang-splitting [6]. However, in that case, the mgwvétep is halfed and one sampling step is used.

Definition of the rarefaction degree

In the DSMC method, the actual value of the number of presadecollisionsN, g needs to be determined for the
simulations. This can be achieved by the inclusion of thefaation degree in the model. The method uses two types
of definition of the rarefaction degree depending on oth@ra@gches with which the results are compared. First, the
method is compared to the linearized Boltzmann equatiothpf} to the McCormack model [8].

In the expression dfl,g, the collision cross section needs to be rewritten in urfite@ problem. In the following,
the o711 collision cross section will be determined by the inclusiminthe rarefaction degree for the LBE and
McCormack cases. The remaining cross sections fogty are obtained byor 12 = o721 = GT,ll(dlz/dll)Z and
Or 22 = 07111(022/0h1)2.

Simulation with regard to LBE

In this situation, the channel widthis given by
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wherel is the dimensionless channel width used in the LBE approglcl\p a result, the cross section of the the first
component can be written by
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as a function of theatio of dz/d;. Using this quantity, the actual value §if,z can be determined.



TABLE 1. Flow rates obtained from DSMC and LBE for pressure driven flow.

DSMC LBE
I 6P Gy G Gy D(%)  Do(%)
Ne/Ar 0.1 3968 3350 3971  3.346 008 012
1 2802 3499 2805 3503 011 011
10 549  7.685 5500  7.688 -0.08  -0.04
He/Xe 0. 3419 3623 3426  3.625 020 -0.06
1 1310 4189 1311  4.187 008 005
10 1799 9927 1801  9.939 011 -0.12

TABLE 2. Flow rates obtained from DSMC and LBE for concentration driven flow.

DSMC LBE
L6 6 ST G M%) (%)
Ne/Ar 0.1 2.813 1.142 2.815 1.146 -0.06  -0.32

1 5.695E-1 2.393E-1 5.698E-1 2.395E-1 -0.06 -0.07
10 6.402E-2 2.735E-2 6.405E-2 2.747E-2 -0.04 -0.44

He/Xe 0.1 3.097 1.170 3.100 1171 -0.11 -0.09
1 6.485E-1 2.607E-1 6.485E-1 2.605E-1 0.00 0.06
10 7.463E-2 3.160E-2 7.412E-2 3.155E-2 0.70 0.16

Simulation with regard to McCormack

In the case of the McCormack model, the cross section of thediimponent is determined from the rarefaction
parameter through the viscosity. The rarefaction paranoétbe mixture is given by = PL/(uvp), wherep = 1(C)
is the mixture viscosity. The viscosity depends on the cottaion. The component viscosities are introduced by
p1 = H(1) andpz = p(0).

The hard-sphere viscosity of the first component [9] can bigemrby

J/TimikaT
1 = 1.016034> YTMakeT (10)
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By using the rarefaction parameter, the characteristicoityl and the ideal gas law together with Eq. (10), the cross
section of the first component is obtained by

S 1/2 (ﬂ)l/z o u (11)

It can be seen that this expression requiresréti® of the mixture viscosity to the viscosity of the first compone
This ratio for hard-spheres can be obtained in a standarsi@nadsing this information, the actual valueMyg can
be determined.

RESULTS

First, simulations have been performed to compare the DS&4Qlts to the LBE for binary hard-sphere gases. In
the simulations, the flow rate has been computed and comparhe results available in Ref. [7]. The results are

characterized by the dimensionless channel width giverein[R]. It is mentioned that thég> values are exactly the
same in the DSMC and the LBE for the pressure driven flow. Hewdte flow rate in Ref. [7] must be multiplied
with (1—C)~! to be compatible with the present DSMC for the concentratioven flow. The following channel
width cases are investigatée- [0.1,1,10]. The concentration i€ = 0.4 in all situations. Diffuse-specular boundary
condition is assumed at the channel walls. The accommatetiefficients arg = [0.2,0.4] for the first and the second
components at the left wall, whilg= [0.6,0.8] for the first and second components at the right wall. Therpaters

in the simulations are given as followss = 100 forl = [0.1,1] andN¢ = 200 forl = 10. The total number of particles



TABLE 3. Flow rates obtained from DSMC and McCormack for pressure driven fl

DSMC McCormack
P P P P

5 G Gy G Gy D(%)  Do(%)
Ne/Ar 0.1 1981 1932 2039 2.058 284 -6.12

1 138 1632 1421 1.688 253 -3.32

10 2271 3151 2315 3.210 190 -1.84
He/Xe 0.1 2097 2013 2065 2.232 155 -9.81

1 1117 1956 1114 2.025 027 341

10 8584E-1 4040  8706E-1 4111 140 -173

TABLE 4. Flow rates flow obtained from DSMC and McCormack for concentration

driven.
DSMC McCormack
5 G -Gy G —Gy) M%) Da(%)
Ne/Ar 0.1 1.763 1.628 1.811 1.737 -2.65 -6.30

1 7.106E-1 6.834E-1 7.220E-1 7.042E-1 -1.58 -2.95
10 1.175E-1 1.198E-1 1.199E-1 1.219E-1 -2.00 -1.69

He/Xe 0.1 2.044 1.698 2.006 1.891 1.89 -10.20
1 9.232E-1 8.432E-1 9.122E-1 8.702E-1 121 -3.10
10 1.861E-1 1.919E-1 1.856E-1 1.878E-1 0.28 2.17

is Nrot = 10° and the the time step &t = 0.008./vp in all cases. Samples have been calculated ovel® time
steps after the system has reached its steady state. Ttagawariocity of the lighter particle between the plates is
fixed atu; = 0.015v.

In Tables 1-2, the flow rates are presented for both DSMC artel MBe difference betwee@f,) for the DSMC and

LBE is defined byAy = (G EX)DSMC— Ga LBE)/Ga Lge- In Table 1, the results for the pressure driven flow is presen
It can be seen that good agreement is obtained between thappvoaches. The absolute discrepancy between the
two situations is less thanZD%. In Table 2, the flow rate for the concentration driven fisywresented. Again, good
agreement is found between the DSMC simulations and LBHiklons. The absolute deviation between the two
approaches is less tharv0%.

Secondly, the flow rate provided by the DSMC simulation is paned to the results of McCormack given by Ref.
[8]. Now, the results are characterized by the rarefactemaimeter. It is noted that the rarefaction parametér4sl,

wherel is the dimensionless channel width in Ref. [8]. Again, thkiga ong) are exactly the same for the DSMC
and McCormack considering the pressure driven flow. Howeterflow rate must be multiplied witfl. —C)~1 in
Ref. [8] for the concentration driven flow. The rarefactiaragmeters for the simulation cases are [0.1,1,10]. The
concentration i€ = 0.5, and the wall is fully diffuse in all situationg,= 1. The parameters in the simulations are the
same as in the LBE situation. However, the average velo€itiyelighter particle is chosen a§ = 0.03vp.

In Tables 3-4, the flow rates are tabulated for DSMC and Mc@mtmThe difference between the results of the

two approaches is also introduced/&s = (G é)DSMC Gg)McmrmaCQ /Ga McCormack Table 3 presents the results of
the pressure driven flow. It is clearly seen that the absdlifterence between the DSMC, which actually solves the
LBE for the hard-sphere gas, and the McCormack is less tti?8 In Table 4, the corresponding results for the
concentration driven flow is presented. Here, the absoleneton between the two approaches is less thaR(pe.
The discrepancy for both flows is the largest in the rarefigibred = 0.1 as it is expected. From these data, it can
be concluded that the agreement between the DSMC (LBE Imdrekrs) and the McCormack is relatively good. This
means that the McCormack can replace the binary hard-sglgstem in actual calculations. Here, it is mentioned
that the McCormack has recently been compared to flow ratsuneaents under isothermal conditions [10]. Very
good agreement has been obtained between the two situafioese results indeed indicate the McCormack can be
considered a good model for binary gases and provide satisfaresults for isothermal situations.

In Fig. 1, the velocity profiles for the McCormack simulatioare presented for the case ®dft= 1 in order to
demonstrate the results. It can be seen that the differegteeebn the McCormack and the LBE results is relatively
small. The agreement between the two approaches is coadidery good.
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FIGURE 1. Velocity profiles obtained from the DSMC and McCormack approachés=atl. Pressure driven flow for Ne/Ar
and He/Xe mixtures: top left and right. Concentration driven flow for NelAd He/Xe mixtures: bottom left and right. The solid
and dashed lines stand for the results of the DSMC simulations for the rfiissecond components, while A stand for the
corresponding McCormack results.

CONCLUSION

In this paper, a DSMC method has been developed for modediagcalculating pressure and concentration driven
binary rarefied gas flows between two parallel plates. Theilfddy of the DSMC to solve the linearized Boltzmann
equation for hard-sphere molecules is confirmed by bendtintathe DSMC results to the ones provided by the LBE
for slow flows. It is concluded that the DSMC is a viable apgiofor solving the Boltzmann equation for binary hard-
spheres. Furthermore, the DSMC results (LBE hard-spheesjampared against the McCormack kinetic model. It
has been found that the agreement between the two apprdadkéively good. This can be an important outcome
for modeling binary rarefied gas flows. The present DSMC aggitawill be applied to other flow configurations in
the near future.
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